Preferential coupling of an incident wave to reflection eigenchannels of disordered media
نویسندگان
چکیده
Light waves incident to a highly scattering medium are incapable of penetrating deep into the medium due to the multiple scattering process. This poses a fundamental limitation to optically imaging, sensing, and manipulating targets embedded in opaque scattering layers such as biological tissues. One strategy for mitigating the shallow wave penetration is to exploit eigenchannels with anomalously high transmittance existing in any scattering medium. However, finding such eigenchannels has been a challenging task due to the complexity of disordered media. Moreover, it is even more difficult to identify those eigenchannels from the practically relevant reflection geometry of measurements. In this Letter, we present an iterative wavefront control method that either minimizes or maximizes the total intensity of the reflected waves. We proved that this process led to the preferential coupling of incident wave to either low or high-reflection eigenchannels, and observed either enhanced or reduced wave transmission as a consequence. Since our approach is free from prior characterization measurements such as the recording of transmission matrix, and also able to keep up with sample perturbation, it is readily applicable to in vivo applications. Enhancing light penetration will help improving the working depth of optical sensing and treatment techniques.
منابع مشابه
Reflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid Saturated Incompressible Porous Solid Interface
In this paper, the reflection and refraction of longitudinal wave from a plane surface separating a micropolar viscoelastic solid half space and a fluid saturated incompressible half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained. Then these amplitude ratios have been computed nu...
متن کاملWave Reflection and Refraction at the Interface of Triclinic and Liquid Medium
A Mathematical model has been considered to study the reflection and refraction phenomenon of plane wave at the interface of an isotropic liquid medium and a triclinic (anisotropic) half-space. The incident plane qP wave generates three types of reflected waves namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) waves in the tric...
متن کاملPlane Wave Propagation Through a Planer Slab
An approximation technique is considered for computing transmission and reflection coefficients for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is s...
متن کاملTransmission eigenchannels in a disordered medium
While the distribution of the transmission eigenvalues of a disordered medium is well understood in the context of random-matrix theory, the properties of eigenchannels have remained unexplored. In this study, we have solved electromagnetic wave propagation through a disordered medium using the finite-difference time-domain method, we numerically constructed a transmission matrix in an optical ...
متن کاملResponse of GN Type II and Type III Theories on Reflection and Transmission Coefficients at the Boundary Surface of Micropolar Thermoelastic Media with Two Temperatures
In the present article, the reflection and transmission of plane waves at the boundary of thermally conducting micropolar elastic media with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected and transmitted waves at different angles of incident wave are obtained. ...
متن کامل